

KY滤シリーズ概要と特徴

2クラス分類

- 1. 2モデルKY法
- 2. 1モデルKY法
- 3. モデルフリーKY法

フィッティング(重回帰)

- 1. 判別関数付き重回帰KY法
- 2. ゾーン設定重回帰KY法
- 3. モデルフリー重回帰KY法

KY法関連および連携技術

- ロ テーラーメードモデリング
 - 「似た化合物判別関数似た活性を示す」の基本定理 大量のサンプル群から、安全性の似たサンプル群を 取り出して、安全性評価を行うことで予測精度を高める
- □ 深層学習の基本理念をKY法に導入
 - 「ある程度冗長な情報を含んだ方が予測性が高くなる」 上記の考えをKY法の判別関数作成や重回帰式構築に 適用する⇒ 特徴抽出を少し緩めて実施

2クラス分類

- 1. 2モデルKY法 :
 - ・ステップ毎に2本の判別関数が必要
- 2. 1モデルKY法 : 1本の判別関数で実施可能
 - ・ステップ毎に1本の判別関数を利用
- 3. モデルフリーKY法:
 - ・判別関数は使い捨てとなる

特徴	2モデルKY法、 1モデルKY法、	モデルフリーKY法
判別関数	2本/ステップ 1本/ステップ	1本/サンプル
判別関数	前もって作成 前もって作成	予測時自動作成
サンプル	多いと扱いにくい ← 同じ	サンプル数依存無し
追加サンプ	ル 新セット構築 ← 同じ	サンプル追加するのみ
自動化	困難 ← 少し簡単に	自動化に向いている
予測性	通常 ← 少し改良	KY法で最高
CPUパワー	- 最も軽い ← 殆ど変わらず	CPUパワー必要
予測時間	最も早い ← 殆ど変わらず	時間がかかる

All Rights Reserved, Copyright © INSILICODATA LIMITED

フィッティング(重回帰)

- 1. 判別関数(DF)付き重回帰KY法
 - アウトライアーとインライアーを区別しつつ多段階操作
- 2. ゾーン設定重回帰KY法
 - ・アウトライアー2本とインライアーとの3本の重回帰式
- 3. モデルフリー重回帰KY法
 - ・残差の最も小さいサンプルから順に取り出し

重回帰KY法

特徴	DF付きKY法、	ゾーンKY法、	モデルフリーKY法
判別関数	1本/ステップ	3クラス分類	判別関数無し
重回帰式	前もって作成	前もって作成	予測時自動作成
サンプル	サンプル数依存無	無し ← 同じ	← 同じ
追加サンプ	ル 新セット構築	← 同じ	サンプル追加するのみ
自動化	困難 ←	少し簡単に	自動化に向いている
予測性	通常 ←	少し改良	KY法で最高
CPUパワー	最も軽い ←	殆ど変わらず	CPUパワー必要
予測時間	最も早い ←	殆ど変わらず	時間がかかる

All Rights Reserved, Copyright © INSILICODATA LIMITED

KY法の今後の展開

- ロ KY法の拡大展開
 - 多クラス分類KY法
- □ KY法と他のデータ解析手法との連携
 - PCAやクラスタリング手法との連携解析
- ロ 関連する最新技術との連携
- ① **関連技術**例:テーラーメードモデリング
- ② 人工知能等

例:様々な情報を総合して判断する自己診断システム